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The present paper addresses the problem of contact between a rigid hemisphere and a 
thin elastic layer strongly bonded on a rigid plane support, which can be thought of as 
an adhesive obeying a geometrically non-linear behaviour due to the change of contact 
area. Using the asymptotic expansion method from a three-dimensional analysis of the 
layer, a two-dimensional model is derived, under the assumptions of large displacements 
and small strains. The leading term of the solution of the asymptotic development is 
such that the displacement field vanes linearly through the layer thickness and the 
stress tensor is constant. A quasi-linear relation is obtained between the area of contact 
and the penetration of the hemisphere within the layer, and the variation with penetra- 
tion of the compressive load exerted by the hemisphere is seen to give satisfactory 
agreement with experiments. In the last part, we present theoretical results concerning 
the rupture behaviour; the effect of adhesion energy between the hemisphere and the 
layer on the radius of curvature at the rupture point between both solids is assessed. 
Further, the thickness of an hypothetical interphase through which failure propagates is 
determined theoretically. 

Keywords: Contact problems; non flat surfaces; thin layers; curvature effects; adhesion; 
perturbation methods 

1. INTRODUCTION 

The derivation of simplified mechanical models of thin films is usually 
done by making assumptions concerning both the kinematics of the 
film and relative order of magnitude of strains and stresses. A pioneer- 
ing work by Goland and Reissner [l] can be considered as a first 
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26 J.F. CANCHOFFER AND J. SCHULTZ 

attempt towards a structural constituent describing an elastic adhes- 
ive. From that, both closed form solutions and special finite elements 
were developed, in which the mechanical fields do  not depend on the 
thickness co-ordinate, i.e. the adhesive can be considered as a material 
surface. Simplified theories for a wide range of structural constituents 
such as plates, beams, shells have been obtained by this way, where 
the two-dimensional model still displays significant original features of 
the original three-dimensional problem. 

Alternatively, the derivation of a simplified theory for structural 
constituents can be done using the asymptotic method, through which 
the classical simplified models are recovered in a deductive way, i.e. 
without any a priori  assumptions due to the thinness of the film, see 
Mitropoulos [Z], Klarbring [ 3 ]  or Ciarlet [4]. 

In asymptotic methods, one tries to construct the solution of the 
three-dimensional problem as a series development of the unknowns in 
terms of a small non-dimensional parameter E (for instance, the ratio of 
the plate thickness to a characteristic macroscopic length); the first term 
in the series represents the limit as t; + 0, which is an approximation of 
the original problem (Ciarlet et a/. 141 and Verhulst [S]). Asymptotic 
analysis relies methematically (and particularly considering the open 
problem of convergence of the asymptotic development for a finite 
value of E) on the general techniques developed by Lions [S] for hand- 
ling linear variational problems containing a small parameter. Methods 
of asymptotic expansion has been shown to provide a powerful and 
systematic (although rather formal) tool for justifying two-dimensional 
plate theories, in both the linear and non-linear cases: the leading term 
of the asymptotic development of the three-dimensional solution indeed 
solves the classical equations of the plate theories, with fewer assump- 
tions and, therefore, greater understanding and confidence. Compared 
with traditional plate theory, the asymptotic method provides more 
information about the general three-dimensional solution, since it gives 
additional higher order terms and boundary layer terms. 

Asymptotic methods’ were first applied to plate problems posed as 
partial differential equations: in that case, some a priori  assumptions 
are still needed. For instance, Goldenveizer [7] assumes that the effect 
of volumic forces can be neglected and that the required state of strain 
and stress is skew-symmetrical about the middle-plane. In addition, 
some difficulties arise concerning the kind of boundary conditions to 
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CONTACT A N D  RUPTURE BEHAVIOUK 21 

be considered for the successive terms of the asymptotic expansion 
(Friedrichs et al. [8]). A further source of difficulty lies in the absence 
of a satisfactory convergence analysis, due to both the setting-up of 
the problem as a set of differential equations (instead of a single one) 
and the lack of a maximum principle (Eckhaus [S]). 

More recently, Ciarlet et al. [4] applied asymptotics to three- 
dimensional linear plate problems posed in a mixed variational form 
(displacement-stress approach) called the Hellinger-Reissner varia- 
tional principle (Washizu [lo] and Valid [ll]). In that approach, 
both the displacement and the stresses are considered as unknowns, 
and such a setting has been shown by previous authors to be the 
natural one for proving convergence of the development, and for ob- 
taining error estimates. 

Quite recently, Klarbring [12] developed an asymptotic model of 
elastic adhesively bonded joints on the same basis; the author assumed 
that the modulus of the adhesive scales as E = t:.Eo, where E ,  has the 
order of magnitude of the adherend modulus. The first order solution is 
then such that the displacement field varies linearly through the plate 
thickness, whereas the Cauchy stress field is constant. 

Consideration of the geometrically non-linear behaviour of certain 
types of adhesives implies that a numerical analysis is necessary in 
most cases. These effects were already taken into account in the work 
by Goland and Reissner [ 11 by imposing secondary loads. Consider- 
ing more recent works, Reddy and Roy [13] derived a finite element 
for an adhesive in a two-dimensional elastic plane stress small strain 
situation, using an updated Lagrangian approach. More complicated 
constitutive behaviour of the adhesive was considered in parallel 
works by the same author, including non-linear visco-elasticity and 
effects of diffusion of moisture. 

Klarbring [14] derived a simplified description of an elastic adhe- 
sive layer connecting two stiff bodies, in which the displacement is 
assumed to vary linearly through the thickness of the adhesive. A 
virtual work equation is derived using a total Lagrangian formulation, 
and the equations are linearized, which enables a finite element treat- 
ment using Newton method. This modelling has been applied to the 
single lap joint and the cantilever beam. 

An extensive study of adherence between rigid cylindrical bodies 
and elastic or viscoelastic materials (elastomers) has been done by 
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28 J .F .  GANGHOFFER AND J. SCHULTZ 

Maugis and Barquins [15, 161; in these works however, the case of a 
thin elastic layer is not envisaged. Non-conformal contact problems 
such as the one treated here can not be calculated solely using Hertz 
theory, since one must consider the shape of the bodies and the way 
they are supported; an extensive analysis of contact problems involv- 
ing cylindrical bodies can be found in the book by Johnson [17], and 
in the many references therein. A paper by Matthewson [18] gives an 
analytical solution for the indentation of a thin soft elastic coating by 
a rigid indenter, using Bessel’s functions. Considering the indentation 
by a rigid hemisphere, the author obtains an excellent agreement 
between the theory and experimental measurements of both contact 
radius and penetration versus the applied load. 

In the present work, we first use the asymptotic method in order 
to derive a two-dimensional simplified model of a thin plate undergoing 
large displacement, which is a generalisation of the asymptotic analysis of 
the same problem in a small displacement situation Klarbring [12]. 

2. SOLUTION OF THE CONTACT PROBLEM BETWEEN 
A RIGID HEMISPHERE AND A THIN ELASTIC LAYER 

2.1. Relation between Area of Contact and Penetration 

A rigid hemisphere (radius R )  is brought into frictionless contact with 
a thin elastic layer (thickness t, modulus E,  Poisson’s ratio v), being 
glued on a rigid plane support; a diagrammatic view of the system is 
presented on Figure 1. 

FIGURE 1 Contact between a rigid hemisphere and a soft elastic layer. 
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CONTACT AND RUPTURE BEHAVIOUR 29 

Due to the fact that the contact occurs on a varying surface, when 
the penetration of the hemisphere increases, there is a geometrical 
non-linearity. As a prerequisite to the solution of this problem, we 
then first establish the contact law for a thin elastic film undergoing 
geometrical non-linear effects. 

The generic problem considered is then the following: we consider 
two bodies Q: and 0; joined (adhesively or not) by a thin elastic layer 
sZo of thickness 2 ~ ,  considered small compared with the dimensions of 
Q;, Qi. The two bodies Q: and SZF, will be called adherends in the 
following, while the thin body Qi is termed adhesive. QE, = w x (- E ,  E )  

is supposed to be a cylindrical body with boundary SE, = y x [ -&,c]; 
the two contact surfaces between the adhesive and the adherends are 
S; = w x ( E )  and S i  = w x ( - E ) ,  Figure 2. 

The placement of the three bodies is a continuous mapping 

4 :& -+ R3, 

where Re = Q; uSZE, u Q ~  and & denotes its closure. The displacement 
is then a mapping 

where Id is the identity map. The Green strain tensor is then defined 
according to 

L 
FIGURE 2 Geometry of the three-dimensional adhesive joint problem 
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30 J .F.  GANGHOFFER AND J. SCHULTZ 

where the standard basis (Ei)i of R3 is used. 
All three bodies are considered linear elastic, the adherends having 

a possible anisotropic behaviour expressed by the constitutive relation 
oij = Aijklekl, where e is the small strain tensor, the linear part of E; the 
previous relation can be inverted, so that eij = ai jk l .  Ski. This means 
that we assume that the adherends experience only small strains. In 
the following, Latin indices take their values in the set { 1,2,3}, while 
Greek indices take their value in the set { 1,2}. 

As a matter of simplicity, the adhesive is assumed to be isotropic 
with tensile modulus E and Poisson's ratio v, so that it satisfies the S' 
Venant-Kirchhoff constitutive law 

where S is the symmetric second Piola-Kirchhoff stress tensor. 
E and v are allowed to be functions of the two first coordinates, but 

not of the third. Body forces f' are applied to all bodies, and surface 
tractions t are applied to the parts S:r, S; ,  of the boundaries an;, 
respectively, whereas the lateral surface of Q: is supposed to be free of 
effort. The adherends are held fixed; - u = 0 on the parts S:,, S; ,  of an.;, 
an.,, respectively. 

The derivation of the contact law between the hemisphere and the 
thin layer is presented in Appendix 1, using an asymptotic method. 
The placement is found to vary linearly through the adhesive thick- 
ness (therefore also the displacement, as found also by Johnson [17] 
in his treatment of contact mechanics), so that the normal components 
of the strain tensor are given by 

1 A + . A +  
E,, = w ,  =5(T - I), with A+ = (4' - +') (4) 
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CONTACT AND RUPTURE REHAVIOUR 31 

The strain tensor solution of the first order problem is then completely 
characterised by equalities (A1 la), (4) and (5) .  

The same strain measures have been obtained by Klarbring [12]; 
asymptotic analysis however enables one to deduce the same simplifi- 
ed model of the adhesive with an increased accuracy, according to 
additional relations (A9a, b, c, d, e), (AlOa, c, d, e) and (Alla, b), see 
Appendix 1. The novelty of this contribution is, thus, the establish- 
ment of a simplified model of an adhesive undergoing large displace- 
ments in a deductive manner. 

We are now in a position to derive a contact law for a thin elas- 
tic film undergoing geometrically non-linear effects. The generalised 
strain measures are defined by Equations (15), (16), and the associated 
stress measures by 

The constitutive Equation ( 3 )  implies that the pi are related to the wi 
through 

p .  = c. . M I .  
1 1J J '  

with 

(7) 

( C . . )  =- 
'J (1 

\ '1 
I -2v 

For a given total penetration, K of the hemisphere into the elastic 
layer, contact of the layer onto the surface of the hemisphere occurs at 
the height h, while the remaining part 6, is the penetration of the edge 
of the contact zone relative to the free surface at infinity. Therefore, 
one has 
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32 J.F. GANGHOFFER AND J. SCHULTZ 

Considering volumic forces, J; and tractions, g, applied on the bound- 
ary, the principle of virtual work expresses as 

which should hold for any admissible variation 64. 
We assume now that volumic forces are negligible and that both the 

hemisphere and the support on which the elastic layer is glued are 
rigid, so that their contribution to (10) is null. Further, the boundary 
conditions are those of imposed traction on the upper surface of the 
hemisphere, and null efforts on the remaining surface of the elastic 
layer; since the contact between the elastic layer and the hemisphere 
is assumed perfect (no relative displacement occurs), and since the 
hemisphere is rigid, it is seen that the virtual work of applied 
tractions expresses as s s c g 3  6+3 d S ,  where Sc is the contact area. In 
the limit of a layer having a vanishing thickness, this integral becomes 
sw p 3 .  6 w 3 .  d o .  

Measures of strains and stresses for a thin film derived in the previ- 
ous section imply that the virtual work of the stresses done within the 
layer expresses as 

according to (10) and to the previously derived expression of the 
virtual work of the tractions. The generalised strain measures are 
defined by Equations (4), ( 5 ) ,  and the associated stress measures by (6). 
The area of contact, A, between the hemisphere and the layer is re- 
lated to the height, h, through 

We now derive the integral over the contact area in (10) with respect 
to the radius a, which gives 
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CONTACT AND RUPTURE BEHAVIOUR 33 

resulting in 

c,, . w,(a). Gw,(a) = 0, v 6w,(a) (14) 

We consider the kinematics of points lying on the upper surface of the 
layer: points already in contact with the hemisphere remain in contact, 
so that their displacement is purely normal. We suppose that points 
entering into contact experience mainly a normal displacement, and 
so we neglect in the following the radial component of the displace- 
ment. Therefore, one has 

where u(a) is the normal displacement of the material point that co- 
incides with the geometrical contact point. 

Equation (25)  implies, then, following differential equation 

The gradient of the displacement at the edge of the contact zone is 
then 

2 v  
g =  -__ v+ t 

According to this, the displacement of a point lying initially on the 
free surface of the layer that comes into contact with the hemisphere is 
u(a + Au) = u(a) + Au = u(u) + g . Au, so that the derivative du(a)/da is 

Using the relations u(a) = V -  h; d a / d A  z 1/2(7~A)”~, the penetration, 
I! solves the following differential equation: 
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34 J.F. GANGHOFFER AND J .  SCHULTZ 

We consider the behaviour of the film under small compressions, so 
that the displacement, I! is negligible with respect to the thickness (V/t 
is less than 0.1); Equation (1 9) then simplifies to 

The integration is easy, so that the penetration is related to the con- 
tact area through 

t 2  2 . f i  2 4 i  
V ( A )  = -. 4R ((- t .& - 1) + exp (--)), t .& (21) 

and it can be checked that the area of contact is related to the penet- 
ration, through A = 27cRV when V tends to zero, which means that 
the height of the edge of the contact zone is null. 

We note from Equation (19) that the relation between contact area 
and penetration does not depend on the mechanical properties of the 
layer, whereas the approximate solution (21) shows that the area of 
contact can be related to the penetration through A = 7cR .f( k(t)), 
where the parameter k(t)  depends only on the thickness of the layer. 

We further examine the consequence of relation (21) when the 
penetration is still small, but finite: the exponential term can be de- 
scribed by its linear development, when the variable 2&/t& is less 
than 0.1, which implies a ratio V / t  less than 2 x lo-". One then has 
the following linear relation between the penetration, I! and the area 
of contact. 

A = k(t)zRV. 

In that case, we represent the area of contact versus penetration in a 
practical situation where R = 20 mm and t = 3.29 mm, with which the 
theory will be compared in Section 3. 

Figure 3 shows that the area of contact varies nearly linearly with the 
penetration, so that A = 1.6nRV considering values of the ratio V/t  less 
than 5 x lop4. It is seen, therefore, that deviations from the limiting 
behaviour ( A  = 27cRV) already occur for very small penetrations. 
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FIGURE 3 Relation between contact area and penetration (Equation (21)) 

2.2. Relation between Compressive Effort and Penetration 

The force exerted by the hemisphere on the elastic layer is the integral 
over the contact area 

where 

E(l - V) s,, = E,, = K"w3, 
(1 + v)(l - 2v) 

where K" is the uniaxial compressibility modulus of a layer having 
modulus E and Poisson's ratio v (K" = E (  1 - v)/(( 1 + v) (1 - 2v))), so 
that the derivative of the force versus the displacement, V ,  is given by 

= k ( t ) n R K U w 3 ,  
dF d F d A  ---_ 
dv- d A  dV 

where the strain w j  is evaluated from Equation (15): 

w,=-+- t 2 t  yv>*-.;, - -- 
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36 J.F. GANGHOFFER AND J. SCHULTZ 

for small penetrations. Relation (25) is then easily integrated, and the 
force-displacement relation is 

k(t)  nRK" 
2t F ( V )  = V 2 .  (26) 

3. COMPARISON WITH EXPERIMENTAL MEASUREMENTS 

A glassy transparent hemisphere (radius 20 mm) is brought into con- 
tact with a thin SBR layer (a commercial elastomer with 0.5% DCP, 
with a thickness of 3.29 mm) being strongly adhered to a rigid plane 
support; the apparatus used for measurements of contact area is 
sketched below (Fig. 4). The area of contact is illuminated by reflec- 
tion of monochromatic light, and is observed through the transparent 
hemisphere with a binocular microscope. The hemisphere is supported 
by a balance, which is moved vertically at a constant speed (a low 
velocity of 0.2 mm/min and a high velocity of 20 mm/min were used) 
via a computer-controlled transducer; the displacement is recorded 
with a precision of about 1 pm. Different magnifications can be used 
and both intensity and orientation of the light source could be ad- 
justed, so that the radius of contact could be obtained with a precision 

binocular I /  
glass plate 

hemisphere 

nwbilc 
plate 

light source 

micrometric screw 

engine 

FIGURE 4 Apparatus for measuring the area of contact 
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CONTACT AND RUPTURE BEHAVIOUR 37 

of about 10 pm. Note, however, that the edge of the contact area 
presents irregularities for small penetrations (less than 0.03 mm), so 
that the precision of measurement is decreased. In order to remedy 
that, chains of silane are grafted on the surface of the glassy hemi- 
sphere (when the chains are long enough, they interdiffuse within the 
elastomer), in order to get a nearly perfect adhesion condition at the 
interface. The coupling agents used were organo-silanes, one extremity 
of which reacts with the glass surface, whereas the other extremity is 
compatible with the polymeric material. The area of contact was 
measured both during compression and subsequent unloading. Only 
the projection of the true area of contact on a horizontal plane could 
be measured. For a radius of the plane contact area, a, the three- 
dimensional area of contact, A (it is a portion of the hemisphere 
surface), is then reconstructed from Equations (10) and (12). When 
making the optical measurements, care must be taken, because the 
error in determining the contact edge can be large when the contact 
diameter is small, so that a correction for optical effects is in fact 
required: the accuracy of radius measurement on the binocular micro- 
scope is thus reduced to the order of 0.1 mm. 

In all situations, the measured area is found to vary linearly with 
the total penetration; the slope of the relation A ( V )  is compared 
(Tab. I) with the value corresponding to the situation in which the 
edge of the contact zone has the same height as the free surface of the 
layer (slope equal to 79.6). 

The slope is nearly the same whatever the velocity and loading 
condition, and the area of contact is found to vary linearly with the 
total penetration according to: 

3 
2 

A E - x ' R .  V ,  

TABLE I Measurement of the contact area us. penetration depth 

Load situation compression compression traction traction 
Velocity (mm/min) 0.2 20 0.2 20 
Experimental slope dA/dh 60.8 63.4 59 60.2 
(mm '/min) 
Relative variation (YO) 20.4 23.6 24.3 25.8 
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38 J. F. GANGHOFFER AND J. SCHULTZ 

and we note that the slope in this relation does not depend on the 
material properties of the contacting solids (it is only a function of 
their geometry). The height, h, of the portion of sphere on which true 
contact occurs is then easily deduced to be: 

3 
h Z - V ,  

4 

so that the height of the edge of the contact zone still represents one 
quarter of the total penetration: 

Comparison of the experimental measurement of contact area Equa- 
tion (27)), with the theoretical relation obtained in Section 3.1 ( A  = 

1.6nRV) shows that the theory correctly describes the experimental 
result: the coefficient k(t)  is 1.5 according to the theory (Equation (27)), 
whereas the measured value is 1.6. Measurements of the forces necess- 
ary to compress the hemisphere onto the elastic were performed on a 
traction machine. The hemisphere (made of steel, radius 20 mm) is 
moved at a constant velocity (1 mm/min), and cylindrical sheets of 
elastic materials of different thickness (0.37 mm; 1.39 mm; 1.84 mm; 
3.29 mm; 9.8 mm; 19.6 mm) were glued on a rigid baseplate. The 
diameter of the elastic sheets was chosen large enough so that it could 
be considered as infinite compared with the radius of the contact area. 
The experimental relation between force and penetration is shown in 
Figure 5 using logarithmic scales for both axes. The variable represen- 
ted on the vertical axis is the force multiplied by the thickness of the 
layer, so that the effect of the thickness is described. 

A linear relation is obtained, with a relatively large scatter: the slope 
lies in the interval 1.29-1.75. The shape of the curves implies that the 
force/penetration function takes the power law form: 

C 
F = - V a ,  

t 

where C and a are constants. The values of the exponent, M ,  obtained 
for the different thicknesses present a relatively large scatter around a 
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.i I 

i R . 20 tnni 

FIGURE 5 
elastic layer. 

Compressive effort us penetration exerted by a rigid hemisphere on a thin 

central value equal to about 1.5. Note that since the force exerted by 
the hemisphere on the elastic sheet is inversely proportional to its 
thickness, it is seen that an infinite force would be needed to compress 
a sheet of vanishing thickness. 

Comparison of this relation with the experimental curve for a 3.29 
mm thick layer being compressed by a hemisphere having 20 mm 
radius (the modulus of the layer has been measured as about 1 MPa, 
and the contraction coefficient is taken as 0.49 to represent a nearly 
incompressible rubbery material) shows that (Fig. 6) the analytical 
solution (Equation (26)) slightly underestimates the measured force, 
with a nearly constant shift over the whole range of penetrations. In 
the present case, the coefficient in front of V in Equation (30) takes 
the value 1.68 x lo8. The relation between load and penetration given 
by Hertz theory is F = KR1/21/3/2,  with K = 4E/3(1 - v). Considering 
the same values of the parameters, the coefficient KR''2 takes then the 
value 3.7 x lo5, so that it can be seen that Hertz theory gives a correct 
agreement with the present model (Tab. 11). 

Compression experiments performed on the same material but with 
a rigid flat punch (the contact area is then constant) have evidenced 
that the global response of the layer over the range of penetrations 
shown on Figure6 is still linear, so that a possible hyperelastic ma- 
terial behaviour can not be considered as responsible for the observed 
discrepancy. On the other hand, it is seen that a small departure from 
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O.OE+O O X - 2  0.4E-2 0.6E-2 0.8E-2 1 .OE-2 1.2E-2 1.4E-2 1.6E-2 1.8E-2 2.OE-2 
Penetration (rnm) 

FIGURE 6 Comparison between experimental and theoretical force-displacement relation. 

TABLE 11 
parison between Hertz model and the present theory 

Relationship between force and penetration. Com- 

Penetration (mm) 0.00 1 0.01 0.1 
Force (N) Hertz model 3.7 x lo-‘ 1.17 x lo -*  0.37 
Force (N) present model 1.68 x lo-* 1.68 x lo-’ 1.68 

complete incompressibility will cause a strong change in the compres- 
sibility modulus in Equation (26) and, therefore, in the compression 
effort. This points towards the need for accurate measurements of 
Poisson’s ratio; not withstanding this, a relatively good agreement is 
obtained (particularly, the proportionality of the force with the inverse 
of the thickness is satisfied). 

4. THEORETICAL STUDY OF THE RUPTURE BEHAVIOUR 

We try to describe the curvature effects at  the edge of the contact 
zone, with considerations of adhesion effects; analytical models in the 
literature describing the penetration of an infinite half-space by a rigid 
hemisphere all lead to a constant curvature-independent of the pene- 
tration: 

-the solution by Sneddon [19] gives a radius of curvature equal to 
the radius of the hemisphere 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
5
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



CONTACT AND RUPTURE BEHAVIOUR 41 

-Maugis and Barquins [18] established a model in which adhesion 
effects could be considered. In both cases (with and without adhe- 
sion), it is found that the elastic block leaves the surface of the hemi- 
sphere with an infinite curvature. 

In these models, the essential difficulty lies in an accurate evaluation 
of the displacement field of the surface of the elastic film under com- 
pression, which forms the starting point of the analysis. We now 
propose a different approach, not being based on the mere knowledge 
of the displacement field. A magnification of the edge of the contact 
zone along the tangent plane is performed, which evidences an *‘in- 
terior” zone where the film is in contact with the hemisphere, and an 
“exterior” zone where the film leaves the surface of the hemisphere 
(there is no more contact); the distribution of stresses will then be 
described by the asymptotic solution for weakly curved shells. 

4.1. Thickness of the lnterphase between the Hemisphere 
and the Elastic Layer 

The unloading of the hemisphere from the film can be described as the 
propagation of a crack at the interface between both materials, and it 
is assumed that physical links are broken within a thin region (the 
interphase) of constant thickness, t. The term interphase denotes the 
boundary polymeric layer developed between successive phases in 
composites; this transition region is characterised by a molecular 
structure different from that of the bulk neighbouring phases. The 
nature, extent and properties of the interphase depend in an essential 
way on the kind of material on either side. The transition layer be- 
tween two polymers is characterised by mixed molecular structure and 
diffusion phenomena, such as the interpenetration of the segments of 
the polymer chains; in this fact lies the essential difference of the 
interphase formed by two polymers and the layer formed by a poly- 
mer and an inorganic solid (Theocaris [20]). Considering the last situ- 
ation, Theocaris proposed a theoretical model for fibrous composite 
materials for both determination of the thickness and law of variation 
of the mechanical properties of the interphase developed between an 
inert fiber and a polymeric matrix. In this so-called unfolding model, 
the mechanical properties of the interphase are assumed to change 
continuously from that of the fiber to the matrix properties; a good 
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42 J. F. GANGHOFFER AND J. SCHULTZ 

agreement was found for the extent of the interphase determined the- 
oretically and experimentally by calorimetric measurements of the 
jump in the heat capacity of the polymeric composite as its glass 
transition temperature. 

The rupture stress at  the point of contact, g R ,  is determined 
considering that the film can be locally identified with a thin plate 
(this is justified by the fact that curvature effects on the contact zone 
are small, since the radius of the hemisphere is large), so that 
o R =  J=/$, Destuynder [21], where Ga is the interfacial 
adhesion energy and K ,  the uniaxial compressibility modulus of the 
layer. In a Cartesian co-ordinate system, the vertical contribution of 
this stress is g R .  cos2HC, which represents, in fact, the derivative of the 
rupture force with respect to the area of contact. One has further that 
cos 0, = 1 - h / R ,  so that the rupture force has the following depend- 
ence on the contact area: 

A 2  
F ~ ( A )  = (31) 

The thickness of the interphase is then determined by the identifica- 
tion of the slope d F R ( A ) / d A  for small compressions in Equation (31) 
with the experimental value (Fig. 7). 

h 

5 
I Experirrie 

' t 
T- 0.02 0.04 0.06 0.08 0.1 

Penetration (rn rn) 

FIGURE 7 Rupture force us. penetration 
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CONTACT AND RUPTURE BEHAVIOUR 43 

Adhesion energy for the film of thickness 3.29 mm has been measured 
(by peeling) as 365 J/M2, so that the interphase thickness is identified as 
0.75 microns. As a matter of comparison, application of the Theocaris 
model to a fibrous composite made of glass fibers (radius of the fibers is 
about 63 microns) embedded in a epoxy resin matrix results in an 
interphase thickness of about 1 micron (Theocaris [20]); the thickness 
depends on both fiber radius and interphase modulus. 

4.2. Effect of the Strength of Adhesion on the Curvature 
at the Edge of the Contact Zone 

The interphase is described as a shell in contact with the hemisphere. 
We first recall the asymptotic models of the shell, as developed by 
Destuynder [22, 231. A small parameter characteristic of curvature 
effects is defined as q = E ’  ~~Tr((alv/dm).(d~/dm))”2~I, where the norm 
of the maximum on the mean surface of the shell has been chosen. 
Different situations are obtained according to the relation between the 
thickness and parameter q, in terms of infinitesimally small quantities. 
One is particularly interested in two limit situations: 

i) q = E :  this case is that of strongly curved shells; it is then found that 
the asymptotic development of the stress field starts with a term in 
tC1, except that for the normal stress the development starts in E - ~ ;  

ii) q = c2: this corresponds to weakly curved shells. The asymptotic 
model obtained is then equivalent to the Novozhilov-Donne1 
model, and the solution starts with a term in E - ~ ,  i.e. ( o - ~ ,  u C 2 )  is 
the unique solution of the system of equations describing the equi- 
librium of the shell. Considering a purely normal loading (such that 
applied tranctions are directed towards the normal to the shell) 
with normal stresses g: and g; on the upper and lower surface of 
the shell, respectively, the unique solution is given explicitly as: the 
normal displacement is independent of the thickness coordinate, 
whereas the transverse shear and normal stresses are given by (see 
Destuynder [22, 231: 

3 
4 

0 s  =-(1 - z’) div(m,) 
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(32 - z3 + 2)(g3 + s:, + z(z2 - 1) 
2 4 a,=--;+ 

where n, is the resulting effort (integration of the 
placement through the shell thickness) and m, 

(33) 

tangential dis- 
is the flexion 

momentum in the shell (integration of the tangential stress). We 
consider in the present situation that the change of curvature 
which occurs when the layer leaves the surface of the hemisphere is 
weak, so that the interphase obeys the weakly-curved shell model 
(consider a practical situation with R = 2 x m, t = m, a 
cylindrical layer having a diameter L = 

the ratio y ja is equal to the inverse of the curvature radius 0.05, so 
that y = 5 x lop6 is of the order of E ~ ) .  

m, so that E = 

The rupture stress at the point of contact, aR = ,/-/&, is 
then identified with the normal stress in the middle plane of the shell 
(z=O) at the point of contact, given by the asymptotic model, 
Equation (33) i.e. 

so that one deduces 

a Z U  1 2(1 -")Jm 
a82 2 3Et9I2 ~ = - c o s 8 , ( 1  +Jm), with K =  

The radius of curvature is then the product of two terms: 

The first term describes purely geometrical models (when adhesion 
energy is null, K = 0), while the second factor describes the effects of 
the strength of bonding between both surfaces. 
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CONTACT AND RUPTURE BEHAVIOUR 45 

Considering the value of the interphase thickness determined previ- 
ously, t = 0.75 pm, and mechanical properties equal to those of the 
elastic film (E  = 1 MPa, v = 0.49), the coefficient K is equal to 1.3 x 

and the curvature at the contact point becomes infinite, so that 
the elastic film leaves the surface of the hemisphere with a sudden 
large change of curvature, which is in fact observed during the 
measurements. 

We lastly evaluate the curvature effect without the effect of adhesion 
forces; we assume, therefore, that the change of curvature at the edge 
of the contact zone is weak, and consider a thin slice of the layer, 
which we identify with a weakly curved shell. One part of it is in 
contact with the hemisphere (the “interior” zone), and is prolonged by 
a part outside the contact area (the “exterior” zone). The radius of 
curvature at  the point of contact is then evaluated from the condition 
of the free surface, i.e. particularly the normal traction, Equation (34), 
is null, which implies: 

(2 - c o t o + ~ ) = o ,  ad 

the radius of curvature being 

(1 + ($)2y‘2 
R, = > 

with x = R sin0 and z = R cod ,  so that 

R2 
i P U ,  cos t), __ 
a o 2  

R, = 

For small compressions, this expression reduces to: 

R 
R , = -  

cos2 0, ’ 
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46 J .  F. GANGHOFFER AND J. SCHULTZ 

so it is seen that the curvature is nearly constant for small indenta- 
tions of the layer. Further, one recovers the expression (35) when the 
adhesion energy is null. 

Forces necessary to detach the hemisphere from the elastic layer 
have been measured on the same traction machine. Using logarithmic 
axes, a linear relation between the rupture force (multiplied by the 
layer thickness) and the penetration is obtained, with a relatively large 
scatter: the slope lies, in fact, in the interval 1.96-3.64. Thus, the 
force/penetration function takes the power law form: 

where C and k are constants. The values of the exponent k obtained 
for the different thicknesses suggest that it is about 3 (compare with 
the value 1.5 obtained during compression). 

We lastly consider energetic aspects and evaluate both the energy 
stored by the system during the compression stage, and the contribu- 
tion of this energy that is released during unloading as a driving force 
for the crack propagation, while the remaining part represents the 
dissipated energy. These energies are evaluated from the experimental 
measurement of the force-displacement relation over a compression- 
unloading cycle corresponding to a displacement of 0.3 mm, for the 
layers of thickness (3.29 mm; 9.8 mm; 19.6 mm). The energy stored 
during compression is simply the integral 

- 0 . 3  

W " = S  F,dh ,  
0 

where F ,  is the compression force. The energy balance during unload- 
ing is now: 

where P R  is the time derivative of the energy dissipated during failure. 
Viscoelastic losses have been assumed negligible compared with the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
5
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



CONTACT AND RUPTURE BEHAVIOUR 47 

TABLE 111 
(amplitude 0.3 mm) 

Energies involved during a compression-unloading cycle 

layer thickness (mm) 3.29 9.8 19.6 
Elastic energy stored (mJ) 1.36 0.67 0.589 
Released energy (mJ) 1.227 0.541 0.377 
Dissipated energy (mJ) 0.131 0.129 0.2 12 

other energy contributions. One deduces then: 

P R =  t . t i . d A -  g . C . d V =  ( t . & . - u . t ) d A ,  (40) 
J A - -  1- - J A  

using the equilibrium equation and Green’s formula. This last quan- 
tity is nothing else than the area delimited by the compression and 
unloading curves; evaluation of energy dissipated during failure then 
follows directly from the recording of the loading parameters (dis- 
placement and force). Energies involved during a cycle are listed in 
Table 111 below. 

It is seen that the stored elastic energy increases when the thickness 
of the layer decreases, while the relative contribution of energy dissi- 
pated during rupture increases with the thickness. 

5. CONCLUSION 

A geometrically non-linear model of the contact between a rigid hemi- 
sphere and a thin elastic layer has been established, in which the 
contact law of the film is deduced from an asymptotic expansion 
method. The area of contact between the hemisphere and the film 
varies linearly with the depth of penetration of the hemisphere, con- 
sidering penetrations much smaller than the layer thickness. The com- 
pressive effort exerted by the hemisphere is then determined as a 
quadratic function of the penetration, which is seen to describe cor- 
rectly experimental measurements. It is though that such a method 
could be extended to the analysis of contact problems involving thin 
films in contact with punches of arbitrary profiles; consideration of the 
effect of the thickness involves either the determination of higher order 
terms in the asymptotic development of the solution, or a numerical 
treatment, as was done by the present author [24] in the case of a 
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rigid, flat, cylindrical punch compressing an elastic layer. The effect of 
adhesion energy on the curvature effects at the edge of the contact 
zone has been assessed theoretically: when adhesion is weak, the elas- 
tic layer leaves the surface of the hemisphere in a smooth way, i.e. 
there is continuity of the curvature, whereas a sudden change of cur- 
vature occurs under strong adhesion conditions. Further, the compari- 
son of the experimental rupture force with that evaluated from an 
asymptotic model provides an evaluation of the thickness of an hypo- 
thetical interphase between both solids, the measurement of which is a 
difficult task. A possible development of this study is the integration 
and modelling of adhesion forces, see Barquins [lS], which are al- 
ready important at the establishment of the contact. 
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APPENDIX 1 

Asymptotic Modelling of Geometrically Nonlinear 
Thin Plates 

The problem is stated in the form of a Hellinger-Reissner variational 
principle: 

Find (S, 4) EX' x V E  such that 

(PI A"S, z) + BE(z, +) = 0, v z E Y 

B"S, $) = F"$), v $ E I/& 

where X E  is the set of symmetrical tensors, while V E  is the set of 
kinematically admissible placement fields, i.e. fields such that the dis- 
placement field satisfies previous boundary conditions. The forms A", 
B E  and the linear form Fe are defined by: 

a i j k l S i j z k l d X E  + la, (- l + v  S . . - - d i j S k k ) r i j d x e  v s n; un; E lJ E 
A"$ z) = 

Note that the functional spaces Y, V E  must be chosen in such a way 
that the product T ~ ~ E ~ ~ ( + )  is integrable in B E .  These variational equa- 
tions can be shown to be equivalent to the differential equations 
governing equilibrium of the three-body system, including the condi- 
tions of continuity of the displacement and traction vectors at  both 
contact surfaces. 

As a first step towards obtaining an approximate solution of the 
original problem, we consider a unidirectional zoom in the thickness 
direction, which defines an equivalent problem but posed now over a 
non-dimensional domain (Fig. Al). 

The geometrical change of the domain is defined mathematically 
through the following coordinates changes: to each point, y, of the 
transformed domain, a, we associate a point, x, of the initial domain, 
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50 J. F. GANGHOFFER AND J. SCHULTZ 

FIGURE A1 A dimcnsional domain. 

Q', through the correspondences: 

The transformation of the geometry induces a transformation of the 
displacement and stress fields, according to: 

Applied forces and elasticity coefficients transform according to: 

We first consider the effect of the change of the geometry on the 
different components of the strain tensor. We notice that the definition 
of the placement (Equation (1)) implies following change: 
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CONTACT AND RUPTURE BEHAVIOUR 51 

According to this, the strain components transform as: 

so that it is seen that the strain components E,, and E,, contain each 
contribution which scales differently according to the power of the 
small parameter involved: 

where the components El,', E:,, E;:, E;;,  E : ,  are identified from 
Equations (Al) and (A2). 

As a consequence, no simple relation between the original and the 
tranformed strain can be found. The stress components are assumed 
to transform according to: 

- - s,, = c-1sa3; s3, = "-2S3,; s,, = sap. 

E is the perturbation parameter, the choice of which is dictated from 
considerations about both relative geometrical and mechanical para- 
meters characteristic of the bodies. Since we assume that the adhe- 
sive is much softer than the two adherends, it is natural to assume that 
the modulus of the adhesive scales as: 
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52 J. F. GANGHOFFER AND J. SCHULTZ 

where Eo has the order of magnitude of the modulus of the adherends. 
Considering (S',  $') the transformed solution, problem ( P )  expresses 
now over the new domain as: 

Find (S',  4') E C x I/ such that 

(P') AO(S",)+&2.A2(S&,Z)+&4.A4(S&,Z)+ B(z,W)=O, v Z€C 

where 
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CONTACT AND RUPTURE BEHAVIOUR 53 

Problem (P") is then expressed in terms of the displacement, which 
involves a split of the strain tensor into a linear and a non-linear part, 
according to: 

1 ( a v ,  av.> 1 auk auk 
2 ax, ax, 2axjaxi Eij(v)  = - - + J + -__- = L(Ei j (v ) )  + NL(Eij(v))  

We now assume that the solution of problem (P") can be expressed as 
the asymptotic developments 

where the successive coefficients of the powers of E are independent of 
E. The need to start the development with a term in E - ~  comes from 
the scaling of the strain component E,-," under the coordinate trans- 
formation (Equation (A2)). Inserting these development into problem 
(P') results in variational equations that must be satisfied whatever the 
F ,  and consequently, the successive powers must be zero. Therefore, 
the coefficient of term E - ~  must be zero, so that: 

( p -  3, B ' (z, NL(E(u  - 2 ) ) )  = 0, v z E c ; 

(F2) A 0 ( S p 2 , ~ ) +  B 0 ( ~ , L ( E ( C 2 ) ) )  + BO(z ,NL(E(u- ' ) ) )  

+ B2(z, NL(E(u-2)))  = 0, v z E c 

(P-1)  AO(S- ' , z )  + BO(z,L(E(u-'))) + B'(z ,NL(E(u- ' ) ) )  

+ B'(z, L(E(u - 2 ) ) )  = 0, v z E X  

(PO) AO(S0,z) + A2(S-Z , z )  + BO(z,L(E(u-O))) + B'(z,L(E(u-')))  

+B2(z,NL(E(u-')))+B2(z,L(E(u-2)))=0, V T € C  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
0
:
5
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



54 J.F. GANGHOFFER AND J. SCHULTZ 

The second equality in ( P -  ') implies in the adhesive part that 

and one duduces (using Green's equality) that 

The traction vector is then constant through the adhesive thickness. 
The first equality in (F') is explicitly (in the adhesive part): 

f 1  

This implies that the in-plane stress field is given by 

and therefore the in-plane stress tensor is null: 

so that the stress tensor is constant through the adhesive thickness. 

lowing expression for the in-plane strain components 
The behaviour law of the adhesive, Equation (3), implies then fol- 
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whereas Klarbring (1992) assumes it is zero. The constitutive law, 
Equation (3), together with Equations (A4) and (A5) implies now 

1 -  
E 

E i :  = -.S;:, so that 

which from the definition, Equation (l), of E implies that J2$ /dX:  = 

0, and therefore the placement varies linearly through the adhesive 
thickness: 

where (b’, (b2  are the traces of (b on Si ,  S i  respectively. 
It can then be concluded that the adhesive can be treated as a 

material surface, i.e. the mechanical field solution of the “first order” 
problem does not involve the thickness coordinate, but can be ex- 
pressed only via their traces on the two interfaces. 

We further derive a series of equalities froin problems (P) (first 
equalities) in order to characterise the strain tensor in the adhesive 
part: 

NL(E,’z-1) + L(E,Is-Z) = 0 (AlOa) 
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NL(E,j ' )  + L(E&j2) = 0 

N L ( E i ? y )  + L(E,-,--Z) = 0 

L ( E ; y )  + NL(E,-,'--l) + L(E,-,'*-Z) = 0 

L(Ei31*- ') + NL(Ef; -  1) + L ( E y )  =2-- s,2 
l + V  

Eo 

(AlOb) 

(AlOc) 

(AlOd) 

(Aloe) 

In a term such as E - ' . - j ,  the superscript i stands for the strain compo- 
nent defined in Equations (Al), (A2) and the second j denotes the 
order of the corresponding term in the asymptotic expansion. 

From (PO)), we deduce (considering a virtual field z null in Qo) that 
Ao(So, T) = 0, V z, which implies So = 0, and therefore from (A9f): 

NL(E,Z) = 0 (Alla) 

L(E&B 1) = 0 (Allb) 

so that the non-linear part of the strain tensor in the adhesive plane is 
zero. Further, Equations (A9a, b, c, e) imply that the components E-' 
and E,, of the strain tensor can be represented by their associated 
linearized strain measures (at the principal order). 

The two systems formed, respectively, by Equations (A9a, b, c, d, e) 
and (AlOa, c, d, e) decouple, so no further information concerning the 
strain tensor can be gained. 
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